Категории
Самые читаемые
vseknigi.club » Научные и научно-популярные книги » Физика » Проклятые вопросы - Ирина Радунская
[not-smartphone]

Проклятые вопросы - Ирина Радунская

Читать онлайн Проклятые вопросы - Ирина Радунская

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 18 19 20 21 22 23 24 25 26 ... 78
Перейти на страницу:

Применение фотоумножителей открыло дорогу другим приборам — черенковским детекторам. Их название происходит от фамилии их изобретателя, советского физика П.А. Черенкова.

Ещё совсем молодым человеком он сделал замечательное открытие. Он обнаружил, что заряженные частицы, например электроны, вызывают свечение в чистых жидкостях, если движутся сквозь жидкость быстрее, чем в этой жидкости распространяется свет.

Это не противоречит теории относительности, ибо скорость распространения света сквозь вещество может быть много меньшей, чем его скорость в вакууме. А именно скорость света в вакууме (но не в веществе) является предельной для перемещения частиц или сигналов. За это открытие Черенков был награждён Нобелевской премией. Академия наук СССР избрала его академиком.

Свечение, возбуждаемое эффектом Черенкова, обладает характерной особенностью. Оно распространяется слабо расходящимся конусом, осью которого является направление движения частицы. Это свечение в черенковских детекторах регистрируется многокаскадными фотоумножителями. Так регистрируется не только факт прохождения быстрой частицы, но и направление её полёта.

Погоня за мгновением распада протона пока не привела к успеху. Учёные лишь уточнили, что среднее время ожидания такого события должно быть существенно увеличено. Вероятно, оно превосходит 1032 лет!

Обескуражил ли такой прогноз физиков? Отнюдь. Они решили: для обнаружения распада протона можно попробовать увеличить объём установки, тогда увеличится количество протонов, за которыми возможно постоянное наблюдение. Более того, эти установки пригодны для детектирования нейтрино! То есть их можно использовать для фиксации вспышек сверхновых звёзд!

Заметим, что детекторы работают в автоматическом режиме и все возникающие в них вспышки фиксируются в памяти ЭВМ. Поэтому ЭВМ способны в любое последующее время обрабатывать данные о зарегистрированных вспышках, причём цель и способ обработки может каждый раз меняться экспериментатором путём составления новой программы для ЭВМ.

Но как исследователи разберутся, зафиксировал ли прибор распад протона или вспышку сверхновой звезды?

ИЗ ПУШКИ ПО ВОРОБЬЯМ

Распад протона должен вызвать в детекторе одиночную вспышку света. Сверхновая звезда сообщит о себе серией вспышек, ведь мы знаем, что гравитационный коллапс, порождающий сверхновую звезду, длится от одной до сотни секунд.

Неудивительно, что, получив известие об открытии сверхновой СН 1987А, физики, работавшие на четырёх действовавших в феврале 1987 года установках, запрограммировали свои ЭВМ на поиск записанных в их памяти событий, при которых световые импульсы появлялись пачками.

Первым сообщил о полученных результатах коллектив, состоящий из пятнадцати японских и восьми американских учёных. Они работали на японской установке Камиоканде II, предназначенной в первую очередь для обнаружения распада протонов и исследования солнечных нейтрино.

Эта установка, вступившая в строй в начале 1986 года, не что иное, как огромный черенковский детектор. Она содержит 2140 тонн очищенной воды, налитой в огромный бак. На внутренних стенках бака расположены 948 больших фотоумножителей. Их чувствительные элементы имеют диаметр около 50 сантиметров. Они закреплены в вершинах квадратов размером метр на метр.

Задачей этого гиганта является фиксация распада протона или реакции с участием нейтрино. Как мы уже знаем, в черенковских счётчиках при движении через бак быстрых электронов или позитронов, рождающихся при подобных реакциях, должно возникнуть особое черенковское излучение.

Однако всё не так просто. Подобные быстрые частицы могут проникать и извне. А это приводит к ложным сигналам. Поэтому учёные пошли на усложнение установки: черенковский детектор помещён внутри ещё большего бака. Пространство между их стенками, равное полутора метрам, заполнено ещё 800 тоннами воды, которая просматривается 126 фотоумножителями. Так создан второй черенковский детектор, задача которого выявлять ложные сигналы главного детектора. Толща воды внешнего детектора играет также роль защиты главного черенковского детектора от приходящих извне гамма-лучей и медленных мюонов.

Получив сообщение о появлении сверхновой звезды СН 1987А, упомянутый нами коллектив учёных принял решение поручить ЭВМ просмотреть все сигналы, записанные в её памяти с 7 часов 21 февраля 1987 года до 23 часов 23 февраля 1987 года (по международной шкале времени: по японской шкале времени сюда добавляется ещё девять часов). При этом в программу ЭВМ были заложены дополнительные указания для обнаружения характерных признаков, отличающих появление ожидаемых нейтрино, порождённых гравитационным коллапсом, от других событий. Как мы уже знаем, при коллапсе за короткое время дол жен возникнуть пакет сигналов о приходе нейтрино. Учёные выбрали для анализа интервал в десять секунд.

Проанализировав все сигналы, поступившие в память ЭВМ за указанное время и исключив из них те, которые следует считать возникшими вследствие других причин, ЭВМ сообщила: за интервал, равный 10 секундам, после 7 часов 35 минут 35 секунд было зарегистрировано двенадцать вспышек.

Из них восемь произошло в интервале, равном всего двум секундам. В каждом событии одновременно участвовало не менеё двадцати нейтрино. ЭВМ также отметила, что в девяти из них участвовало не менее 30 нейтрино. ЭВМ определила, что сочетание всех возможных случайностей привело бы к возникновению подобного результата лишь один раз за 70 миллионов лет.

Черенковский детектор Камиоканде II подтвердил, что нейтрино пришли из района Большого Магелланова Облака.

Получив эти сведения, учёные решили проконтролировать ЭВМ. Они поручили ей проанализировать все события, зафиксированные в её памяти с 9 января по 21 февраля 1987 года. Ничего подобного не было обнаружено. Обсудив эти данные с подробностями, которые интересны лишь специалистам, учёные написали:

«Это наблюдение является первым непосредственным наблюдением в нейтринной астрономии (за исключением наблюдения нейтрино, испускаемых Солнцем. — И. Р.), и оно прекрасно совпадает с современной моделью коллапса сверхновой и образования нейтронной звезды. В этой модели старая звезда, исчерпав своё ядерное горючее, подвергается взрывоподобному превращению в сверхновую».

Авторы подчёркивают большое значение своего наблюдения для физики элементарных частиц.

Следующее важное сообщение пришло от международной группы, состоящей из десяти советских и десяти итальянских учёных. Они работали на жидкостном сцинтилляционном детекторе, сооружённом совместно Институтом ядерных исследований АН СССР и Институтом космогеофизики Национального совета исследований Италии. Прибор расположен в туннеле под Монбланом, высочайшей вершины Западной Европы. Детектор вступил в строй в октябре 1984 года. Он состоит из 72 сцинтилляционных модулей, каждый объёмом в полтора кубических метра. Для того чтобы снизить влияние естественной радиоактивности окружающих пород, детектор экранирован плитами общим весом около 200 тонн. Каждый модуль просматривают три фотоумножителя.

Как представляли себе работу прибора его авторы?

Реакция космического антинейтрино с протоном порождает нейтрон и позитрон. Она регистрируется двумя путями: позитрон вызывает вспышку сцинтиллятора, вслед за которой возникает вторая вспышка. Эта вспышка — результат двухстепенной реакции. Нейтрон, рождённый в первой реакции, объединяется с другим протоном, образуя дейтон и гамма-квант. Гамма-квант вызывает вторую вспышку сцинтиллятора.

За время работы детектора, за отрезок времени около двух лет, конструкторы хорошо изучили случайные вспышки сцинтилляторов. Закономерность их возникновения учитывалась ЭВМ при обработке результатов наблюдений за космическими антинейтрино.

ЭВМ должна была выделить серию импульсов, появляющихся в течение интервалов времени длительностью менее 20 секунд. В результате анализа выявлена серия из 5 импульсов, возникших 23 февраля 1987 года в течение 7 секунд, начиная от 2 часов 52 минут 37 секунд. Оценка показала, что эта пачка импульсов могла бы возникнуть и случайно, но не более чем один раз в год. В одном из этих случаев достоверно (а ещё в трёх случаях с большой вероятностью) была зафиксирована вторая стадия реакции, начатой при взаимодействии антинейтрино с протоном: нейтрон, рождённый при этом взаимодействии, объединился с протоном, испустив квант гамма-лучей. Этот квант тоже был зафиксирован детектором. Появление пачки импульсов, порождённых нейтрино непосредственно перед вспышкой сверхновой звезды, не является случайным, так как подобное событие могло бы произойти лишь один раз за тысячу лет.

Расскажем и о третьем сообщении. Оно поступило от группы, состоящей из 34 американских исследователей. Они представляли 14 организаций. С ними работали два англичанина и одна сотрудница Варшавского университета, стажировавшаяся в то время в США.

1 ... 18 19 20 21 22 23 24 25 26 ... 78
Перейти на страницу:
На этой странице вы можете читать бесплатно книгу Проклятые вопросы - Ирина Радунская без сокращений.
Комментарии