Категории
Самые читаемые
vseknigi.club » Научные и научно-популярные книги » Прочая научная литература » Суперобъекты. Звезды размером с город - Сергей Попов
[not-smartphone]

Суперобъекты. Звезды размером с город - Сергей Попов

Читать онлайн Суперобъекты. Звезды размером с город - Сергей Попов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 21 22 23 24 25 26 27 28 29 ... 41
Перейти на страницу:

Однако черная дыра сама по себе достаточно симметрична, она ничего излучать не будет. Нам нужна какая-то асимметрия. К счастью, в природе происходят нужные нам несимметричные процессы. Например, было две массивные звезды. Обе поочередно взорвались как сверхновые и дали две черные дыры. И теперь они крутятся друг вокруг друга. Далее, представьте, у вас два уже шарика катаются по нашей эластичной плоскости, вращаясь вокруг общего центра масс. От них обязательно побежит рябь. Испускаются волны.

Вращаясь по своим орбитам, черные дыры испускают гравитационные волны. Они уносят энергию и момент импульса орбитального движения. Поэтому черные дыры постепенно сближаются. Гравитация так устроена, что если от системы двух тел отнять энергию, то скорость орбитального движения по мере сближения только растет. В случае черных дыр она постепенно доберется до скорости света. Значит, перед слиянием у каждой черной дыры имеется колоссальная кинетическая энергия.

Система из двух компактных объектов, которые сближаются за счет испускания гравитационных волн. Если хотя бы один из объектов является радиопульсаром, то мы можем очень точно измерить изменение параметров системы, что позволяет не только определить свойства обоих компонентов, но и проверять предсказания теорий гравитации.

Итак, мы рассматриваем экстремальный случай. Мы берем одну черную дыру и кидаем в другую. Это уникальный процесс, где столкновение происходит на скорости света, большего и представить нельзя. Вроде бы должна выделиться куча энергии, и она как бы выделяется – только в виде чего? Ведь у черных дыр нет поверхности! У нас сталкиваются не два обычных тела, а две области пространства-времени, ограниченные горизонтом. Вся огромная энергия выделяется в виде гравитационных волн. Если сливается система из двух черных дыр, то происходит очень мощный гравитационно-волновой всплеск. Такие сигналы планируют поймать на гравитационно-волновых антеннах LIGO и VIRGO. В ближайшее время это самый реалистичный способ открыть черные дыры. То есть ученые одним открытием убьют двух зайцев.

Во-первых, будет напрямую доказано существование гравитационных волн. Сейчас у нас есть лишь косвенное подтверждение. Астрономы наблюдали двойную систему, но не из двух черных дыр, а из двух нейтронных звезд. Одна из них излучает как пульсар, поэтому это как бы очень точные часы, посылающие нам регулярные сигналы, и мы видим, что система сближается, и единственный разумный механизм, который это все объясняет, как раз гравитационные волны. Данные наблюдений оказались в полном согласии с предсказаниями Общей теории относительности. За открытие и исследование двойного радиопульсара астрономы получили Нобелевскую премию по физике. Затем эти результаты были независимо проверены и подтверждены благодаря наблюдению десятка подобных систем.

Во-вторых, если мы откроем сигнал от слияния черных дыр, то мы не только напрямую зарегистрируем гравитационные волны, тем самым доказав правильность геометрического подхода к гравитации, мы еще и получим сильнейшие аргументы в пользу того, что мы правильно понимаем природу черных дыр. Две дыры сольются, образуя единую дыру, ее горизонт будет дрожать какое-то время, и от этого тоже можно зарегистрировать гравитационно-волновой сигнал. Поэтому задачи, связанные с регистрацией гравитационных волн, считаются крайне перспективными.

Слияния нейтронных звезд

Лучшим кандидатом в самые первые системы, чей гравитационно-волновой сигнал мы сможем зарегистрировать, являются сливающиеся нейтронные звезды. Они легче чёрных дыр и менее компактны, тем не менее, если слияние происходит ненамного дальше близких крупных скоплений галактик, мы рассчитываем, что сигнал смогут увидеть установки LIGO и VIRGO уже в ближайшие пару лет (затем можно будет наблюдать и более далекие всплески – вплоть до расстояний 200–250 мегапарсек).

Сливающиеся нейтронные звезды – это естественный продукт эволюции массивных двойных. Мы наблюдаем двойные радиопульсары и знаем, что многие из этих систем должны слиться за время, меньшее времени жизни Галактики. Расчеты показывают, что в галактике типа нашей слияния происходят раз в несколько десятков тысяч лет. Черные дыры сливаются друг с другом (или с нейтронными звездами) гораздо реже. Одной из первых работ, посвященных таким слияниям, была статья 1977 года Джона Кларка и Дугласа Эрдли. В ней рассматривалась судьба нейтронной звезды на последних стадиях процесса. Также важные результаты по слияниям были получены в работе Сергея Блинникова и его коллег, опубликованной в 1984 году. Сейчас процессы при слиянии компактных объектов изучают с помощью численного моделирования на самых мощных суперкомпьютерах. И все равно остаются вопросы.

Слияния нейтронных звезд – это прямо-таки золотой феномен: некоторые современные модели показывают, что большая часть золота во вселенной возникла именно в этом процессе. В том числе то золото, из которого делают нобелевские медали.

Слияния нейтронных звезд блестят и сияют во всех диапазонах. Это не только мощный источник гравитационных волн. При слиянии выделяется много энергии, вещество нагревается до гигантских температур – поэтому возникает интенсивный поток нейтрино. И конечно же, мощное электромагнитное излучение.

Сливающиеся нейтронные звезды – главный кандидат в источники коротких гамма-всплесков с длительностью порядка секунды. Почти за полвека наблюдений обнаружено много сотен таких событий, и все данные указывают, что лучшего объяснения не найти. Окончательным подтверждением должно стать одновременное обнаружение гамма-всплеска и гравитационно-волнового сигнала. Скорее всего, это произойдет в третьем десятилетии нашего века.

После слияния синтезируется много новых элементов (не только золото). Среди них есть и радиоактивные. Поэтому можно будет видеть некий аналог сверхновой – мощную вспышку, – но только с максимумом излучения в инфракрасном диапазоне спектра. Такие явления называют килоновыми. Название связано с завышенной первоначальной оценкой: ожидалось, что вспышки будут в тысячи раз ярче вспышек новых. Теперь расчеты говорят о том, что вспышки ярче новых всего лишь раз в сто (поэтому некоторые астрономы шутят, что их стоит переименовать в гектоновые), но зато сам всплеск виден дольше. Наблюдения таких вспышек в инфракрасном диапазоне спектра должны подсказать нам точные координаты всплеска (наблюдения только гравитационного излучения еще долго не будут в состоянии дать очень точные координаты, даже когда число детекторов возрастет и к двум американским и одному европейскому прибавятся установки в Индии и Японии). Тогда явление можно будет изучить гораздо лучше, наведя в эту точку астрономические спутники и крупнейшие наземные телескопы.

Наконец, если в недрах компактных объектов было кварковое вещество, то после слияния «полетят (кварковые) клочки по закоулочкам». Кварковое вещество может существовать в виде очень маленьких порций – страпелек (strangelet). То есть даже вне компактного объекта оно не теряет свои свойства. Мы надеемся, что специальные космические аппараты для изучения космических лучей (AMS-02 и подобные ему) смогут поймать страпельки. Или же наблюдения покажут, что ничего не поймали, а значит, кваркового вещества не существует. Это, кстати, тот случай, когда отрицательный результат поисков тоже важен и дает новую существенную информацию.

Как ловят гравитационные волны

Собственно, как ученые хотят это сделать? Когда гравитационная волна проходит сквозь предмет, она сжимает и растягивает его. Если у нас есть несколько предметов, то можно заметить, что меняются расстояния между ними. Скажем, если вы бросите в космосе бусы и они расположатся в виде идеальной окружности, то проходящая гравитационная волна будет периодически превращать такую окружность в эллипс и обратно. В зависимости от поляризации волны для нас это будет выглядеть как череда расширений в одном направлении и сжатий в другом. Если мы сумеем измерять расстояния между разными бусинками, то сможем заметить слабую гравитационную волну, заставляющую бусы совершать эти колебания.

Вначале ученые пытались ставить металлические (например, алюминиевые) болванки и смотреть, как они будут сжиматься-растягиваться. Для этого на них устанавливались пьезодатчики. Первым подобные опыты начал Вебер в конце 60-х годов прошлого века и продолжал их несколько десятилетий. Детекторы этого типа чувствительны в очень узкой полосе частот, соответствующей резонансу в болванке. Это не очень хорошо, так как источники могут и не излучать волны на данной узкой частоте. Например, сигнал от сливающихся нейтронных звезд будет непрерывно менять частоту (она будет расти) по мере сближения объектов и уменьшения орбитального периода.

1 ... 21 22 23 24 25 26 27 28 29 ... 41
Перейти на страницу:
На этой странице вы можете читать бесплатно книгу Суперобъекты. Звезды размером с город - Сергей Попов без сокращений.
Комментарии