Категории
Самые читаемые
vseknigi.club » Фантастика и фэнтези » Научная Фантастика » Бег за бесконечностью - Александр Потупа
[not-smartphone]

Бег за бесконечностью - Александр Потупа

Читать онлайн Бег за бесконечностью - Александр Потупа

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 26 27 28 29 30 31 ... 63
Перейти на страницу:

Именно такова их основная специальность в настоящее время; и надо отметить, что зарекомендовали они себя в этом деле с лучшей стороны. Если учесть, что сейчас в составе космических лучей зарегистрированы частицы с энергиями до 1021 электрон-вольт, а на ускорителях изучают реакции при энергиях частиц лишь до 1012 эВ, то становится ясно - им еще долго предстоит выполнять функции "стратегической разведки".

Все это неплохо - одним поставят памятник, другие уйдут в разведку. А кто же станет работать? Природа не позаботилась о достойной замене и не предложила ни одного естественного источника радиации, который помог бы обойти все наметившиеся трудности. Но физики уже представляли себе путь, по которому следовало двигаться, - частицы должны ускоряться электрическим полем; в принципе так же, как и при получении катодных лучей (электронов с большими скоростями). Только электроны ускорялись разностью потенциалов всего в несколько тысяч электрон-вольт, а теперь нужны миллионы. Следовательно, необходимо решать электротехнические проблемы с созданием высоковольтных установок...

Между этими ранними идеями и действующими установками лежат годы трудных поисков, великолепные находки и тягостные сомнения, радужные и пессимистические прогнозы.

1918 год. Петроград. Город борется за новую жизнь. Трудно с хлебом, трудно с работой, по ночам на вымерзших, пустынных улицах нет-нет и вспыхивают короткие ожесточенные перестрелки... Но и здесь, в центре великого социального потрясения, с невероятным напряжением сил идет битва за будущее русской науки, закладывается основа уверенного взлета. И одним из первых пунктов программы научного развития стала организация радиевого отделения при Радиологическом и рентгенологическом институте.

Огромную роль в создании нового отдела сыграл энтузиазм тридцатилетнего Л. Мысовского, который уже несколько лет успешно занимался проблемами новой физики. Фактически он был первым и едва ли не единственным физиком России, приступившим к исследованиям радиоактивности в дореволюционное время. В начале 1922 года радиевое отделение преобразуется в знаменитый Радиевый институт, где были сконцентрированы работы с применением ядерных излучений в самых различных областях науки. Руководство физическим отделом этого института было поручено Л. Мысовскому. Летом этого же года он представил на заседание ученого совета доклад по своей совместной со студентом Петроградского электротехнического института В. Рукавишниковым работе, где была сформулирована идея использования генераторов высокого напряжения для ускорения альфа-частиц до нескольких миллионов электрон-вольт.

Практически в это же время Патентное ведомство США рассматривало оригинальную заявку, поступившую из штата Пенсильвания. В ней молодой сотрудник исследовательской лаборатории фирмы Вестингауз Дж. Слепян предлагал несколько иную конструкцию установки для ускорения заряженных частиц, так называемый индукционный ускоритель электронов.

Так общие идеи превратились в конкретные, осязаемые проекты. Но лишь последующее десятилетие перевело интересные предложения на язык действующих моделей. В 1929 году в Принстонском университете заработал первый электростатический генератор Р. Ван де Граафа с ускоряющим напряжением до 80 тысяч вольт. Через два года на третьем варианте его установки было достигнуто напряжение в полтора миллиона вольт!

Еще через год английские физики Дж. Кокрофт и Э. Уолтон коротенькой заметкой в журнале "Нейче" ("Природа") оповещают научную общественность о первой впечатляющей победе ускорительной эры. С помощью двухкаскадного генератора напряжения они создали пучок протонов с энергией 710 тысяч электрон-вольт и обстреляли литиевую мишень. В результате столкновения протона с ядром лития образовывались две энергичные альфа-частицы, то есть наблюдалась реакция расщепления ядра. Таким образом, искусственная радиоактивность была получена при помощи искусственных же источников быстрых частиц!

Вскоре был придуман совершенно иной, оригинальный принцип ускорения. В 1929 году двадцативосьмилетний адъюнкт-профессор Калифорнийского университета Э. Лоренс изобрел циклотрон - прибор, основанный на резонансном ускорении заряженных частиц высокочастотным полем, по справедливости считающийся родоначальником обширного семейства современных гигантских машин.

Несколько уточняя генеалогию ускорителей, нельзя не напомнить, что по современным масштабам предки рода гигантов были воистину карликами. Первая модель циклотрона имела диаметр магнитных полюсов 10 (!) сантиметров и представляла собой крайне нелепое сооружение из стеклянных пластинок, скрепленных сургучом. Но самое любопытное в том, что эта конструкция, хранящаяся ныне в Лондонском научном музее, все же работала - по мере "слабых своих возможностей"- и ускоряла ионы водорода. Спустя некоторое время Э. Лоренс получил в подарок от крупной телеграфной компании 74-тонный электромагнит, который более десяти лет провалялся у нее на складе (выбросить жалко, продать - никто не купит). Магнит разместили в старом деревянном доме вблизи университета и стали монтировать большой циклотрон. На фасаде появилась интригующая вывеска: "Радиационная лаборатория"; и все просвещенное население небольшого городка Беркли с нетерпением ожидало приобщения к ядерным "таинствам". Монтаж и запуск ускорителя прошли вполне успешно, и в 1932 году физики получили хороший пучок протонов с энергией 3,6 миллиона электрон-вольт. Так произошло рождение замечательного прибора - циклотрона. А с небольшого деревянного дома начинался один из крупнейших в мире центров ядерных исследований Берклиевская радиационная лаборатория имени Э. Лоренса.

Принцип действия лоренсовского ускорителя довольно прост и в основных чертах используется в последующих проектах, включая самые современные. Заряженные частицы нужно гонять по кругу, периодически подхлестывая высокочастотным электрическим полем так, чтобы в каждом цикле они приобретали дополнительный импульс. А удерживать их на круговой траектории должно особое магнитное поле, причем чем сильней действует магнит, тем меньше радиус окружности, по которой несутся частицы.

Но возможности проникновения в область миллиардов электрон-вольт с помощью такого циклотрона оказались закрытыми. На пути замечательной идеи стояли основные принципы теории относительности. Чем больше скорость частицы, тем больше ее масса, и этот рост массы разрушает цикличность процесса - поле начинает не вовремя подстегивать отяжелевшие частицы.

Выход из трудного положения был найден только в 1944 году советским физиком В. Векслером. Раз массы ускоряемых частиц растут, рассуждал он, значит, для сохранения их "нормальных отношений" с полями последние должны также меняться синхронным образом. При этом можно идти одним из двух путей: либо менять частоту электрического поля, либо - интенсивность магнитного. Выбор пути предоставлялся экспериментаторам и конструкторам.

(adsbygoogle = window.adsbygoogle || []).push({});
1 ... 23 24 25 26 27 28 29 30 31 ... 63
Перейти на страницу:
На этой странице вы можете читать бесплатно книгу Бег за бесконечностью - Александр Потупа без сокращений.
Комментарии