Категории
Самые читаемые
vseknigi.club » Научные и научно-популярные книги » Прочая научная литература » История земли и жизни на ней - Кирилл Еськов
[not-smartphone]

История земли и жизни на ней - Кирилл Еськов

Читать онлайн История земли и жизни на ней - Кирилл Еськов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 30 31 32 33 34 35 36 37 38 ... 68
Перейти на страницу:

Картина эволюции растительности от девона до наших дней выяснена (в общих чертах) достаточно давно. Для наиболее молодых, кайнозойских, флор установлена ясная климатическая зональность, хотя и отличная от нынешней (на арктических островах росли деревья, характерные ныне для зоны широколиственных лесов — например, каштаны и платаны). Мезозойские флоры существенно более однообразны по всей Земле. Сложнее ситуация с палеозоем. Пермские и позднекарбоновые флоры Европы и Северной Америки, как уже было сказано, сходны с китайскими, но резко отличны и от сибирских, и от флор всех материков Южного полушария. Но ниже по геологическому разрезу — в раннем карбоне и далее, в девоне, мы снова сталкиваемся с единством флор различных материков. Отсюда можно заключить, что климатическая зональность была минимальной в девоне и начале карбона, затем усилилась в позднем палеозое, снова ослабла в мезозое, а потом опять начала усиливаться, достигнув ныне своего максимума.

Мы с вами помним, что в верхнепалеозойских слоях всех гондванских материков найдены ледниковые отложения — тиллиты (которые послужили одним из отправных пунктов в построениях Вегенера); следы оледенений найдены и в одновозрастных отложениях Ангариды. А вот за изъятием этого отрезка времени (поздний карбон — ранняя пермь) и современности климат в высоких широтах был если и не жарким, то во всяком случае безморозным: в раннем карбоне и Европы, и Шпицбергена, и Сибири найдены толстые, явно многолетние стволы плауновидных с маноксилической древесиной[41], а в эоцене острова Элсмир (Канадский архипелаг) — крокодилы. Современная климатическая картина с крупными полярными шапками из снега и льда — скорее исключение, чем правило в геологической истории. Так что следует искать ответа не на вопрос, почему в раннем карбоне и в мезозое не было полярных шапок, а на вопрос, отчего они иногда образовывались (и меняли весь климат планеты). Периоды существования такого контрастного климата с холодными полюсами, как в позднем палеозое и позднем кайнозое, называют криоэрами («криос» — по-гречески холод), а выровненного по всей Земле (как в мезозое) — соответственно, термоэрами. Общее количество тепла, получаемое Землей от Солнца, считается достаточно постоянным во все времена; здесь существует своя циклика (см. главу 14), но расстояние-то между ними неизменно. Следовательно, дело в основном в распределении этого тепла по поверхности планеты, прежде всего — в характере и интенсивности теплопереноса от экватора к полюсам.

Для начала, как водится, несколько общих замечаний. Поскольку планета шарообразна, солнечные лучи всегда будут, при прочих равных, нагревать ее экватор сильнее, чем полюса — экваториально-полярный температурный градиент; любой градиент стремится к выравниванию (просто по Второму закону термодинамики) — в нашем случае за счет постоянного теплообмена между низкими широтами и высокими. Теплообмен этот осуществляется посредством конвекции в обеих подвижных оболочках Земли — гидросфере и атмосфере.

Конвекция в гидросфере — это теплые морские течения, которые обогревают высокоширотные области точно так же, как водяное отопление — ваши квартиры. Движущей силой конвекционных токов, как мы помним из главы 2 (о мантийной конвекции), являются возникающие в среде архимедовы силы плавучести: когда часть вещества «тонет» или «всплывает», этот объем — в силу связности среды — замещается веществом, поступающим из другой ее точки. В нашем случае токи в Мировом океане могут возникать за счет того, что «тонет» либо холодная (четырехградусная) вода в высоких широтах (термическая циркуляция), либо избыточно осолоненная (в результате испарения) вода на экваторе (галинная циркуляция). При термической циркуляции вода движется от экватора по поверхности, а от полюсов — по дну (формируя при этом холодную насыщенную кислородом психросферу), а при галинной — наоборот (рисунок 34, б).

РИСУНОК 34. Циркуляция в атмосфере и гидросфере: схема термической и галинной циркуляции в океанах: (а) — криоэра, (б) — термоэра.

Говоря о конвекции в атмосфере, необходимо учитывать, что здесь тепло переносится главным образом водяным паром: тепловая энергия, затраченная на испарение воды, выделяется там, где этот пар, перенесенный воздушными течениями, превратится обратно в жидкость — то есть выпадет в виде осадков. Атмосфера каждого из полушарий распадается на три широтных сегмента[42] — конвективные ячейки: экваториальная, умеренных широт и приполярная. В каждой из ячеек существует относительно замкнутая воздушная циркуляция, причем направления циркуляции в граничащих между собой ячейках противоположны («по часовой стрелке» — «против» — опять «по») — в точности, как в цепи шестеренок (рисунок 34, а). В одной половине ячейки доминируют восходящие токи, во второй — нисходящие; соответственно, влага, испаряющаяся в первой половине, выпадает главным образом во второй — и при этом происходит разгрузка теплоты парообразования. Например, в экваториальной ячейке Северного полушария ток направлен от севера к югу, так что в южной ее половине возникают влажные тропические леса, а в северной — засушливые саванны; в ячейке же умеренных широт, где направление тока обратное, пустыни возникают на юге, а субтропические и широколиственные леса — на севере. Другим фактором атмосферной конвекции (главным образом широтным) являются муссоны — сезонные ветры постоянного направления, дующие с океана на континент или обратно; с муссонами связано, среди прочего, чередование сухого сезона и сезона дождей в тропических широтах, где температура весь год постоянна.

Так вот, возвращаясь к крио— и термоэрам. Ныне (как, видимо, и вообще в криоэрах) основной приток тепла в высокие широты осуществляется мощными теплыми течениями вроде Гольфстрима. При этом возникает температурная аномалия: океан в районе 60-х широт существенно (почти на 20 градусов!) теплее, чем следовало бы из соображений геометрии планеты. Однако это обстоятельство имеет и оборотную сторону: на материке развивается мощный зимний антициклон (область высокого давления) с температурами на 20 градусов ниже, чем следовало бы. Из антициклона «вытекает» холодный сухой воздух, тогда как встречный ток теплого воздуха лишь «приподнимает верхушку» антициклона — то есть тепловая энергия расходуется на механическую работу против силы тяжести. В итоге континентальные антициклоны работают как мощные всепланетные холодильники (влияние Сибирского антициклона ощущается далеко на юге и приводит к холодным зимам не только в Приморье, но и в Китае, и даже во Вьетнаме), которые ослабляют муссоны и не дают им продвинуться сколь-нибудь далеко в полярном направлении. Теплые воды отводятся из экваториальной зоны столь быстро, что практически не успевают осолониться за счет испарения, так что галинная составляющая океанской циркуляции по сравнению с термической пренебрежимо мала; в атмосфере существуют упомянутые выше три ячейки. Ситуация может быть кратко охарактеризована так: «Водный теплоперенос — теплые океаны — холодные материки».

В термоэры (в частности, в мезозое) ситуация, судя по всему, была принципиально иной. А.Г. Пономаренко (1996), предложивший соответствующую модель, обращает внимание на два обстоятельства, кажущиеся необъяснимыми с нынешних позиций. Во-первых, приполярные области были очень теплыми (исходя из состава их фауны и флоры), что требует куда более интенсивного, чем ныне, теплопереноса от экватора к полюсу. Во-вторых, в тогдашней экваториальной зоне (где ныне находятся дождевые тропические леса) растительность была явно ксерофильной и возникали эвапориты — отложения, являющиеся показателем аридных (пустынных) условий.

При отсутствии полярных шапок температура океанической воды не падает до 4, когда ее плотность максимальна, и не происходит полного опускания поверхностных вод. Компенсирующие такое погружение мощные теплые течения не возникают; теплая вода из экваториальной зоны практически не отводится, она осолоняется за счет испарения и погружается на дно — галинная циркуляция здесь резко доминирует над термической. Поверхностные слои океанов в умеренных широтах относительно холодны, и температурного контраста между океанами и материками не возникает; не возникает и зимнего антициклона, так что ничто теперь не мешает муссону переносить теплый воздух и водяной пар чуть ли не до самого полюса.

Если в криоэрах в каждом из полушарий существуют три атмосферные ячейки и единственная (термическая) океанская, то в термоэрах ситуация, похоже, была как бы зеркальной. В атмосфере существует единственная ячейка, в которой происходит прямой перенос тепла и влаги из приэкваториальных областей в приполярные; это хорошо объясняет упомянутый выше парадокс с располагающимся на экваторе аридным поясом[43]. В гидросфере, напротив, существуют две ячейки, причем в экваториальной ячейке циркуляция идет по галинному типу, а в высокоширотной — по термическому. В зоне соприкосновения гидросферных ячеек, где водные массы движутся друг навстречу другу, должны возникать апвелинги[44]; подтверждением тому служит распространение по этой предполагаемой границе обогащенных органикой черносланцевых формаций, которые отлагаются в избыточно-продуктивных морских акваториях.

1 ... 30 31 32 33 34 35 36 37 38 ... 68
Перейти на страницу:
На этой странице вы можете читать бесплатно книгу История земли и жизни на ней - Кирилл Еськов без сокращений.
Комментарии