Категории
Самые читаемые
vseknigi.club » Разная литература » Периодические издания » Юный техник, 2005 № 09 - Журнал «Юный техник»
[not-smartphone]

Юный техник, 2005 № 09 - Журнал «Юный техник»

Читать онлайн Юный техник, 2005 № 09 - Журнал «Юный техник»

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 13
Перейти на страницу:

Нечто подобное предлагают наши ученые создать и для топливных элементов.

— Вспомните, когда-то в наших вычислительных машинах, радиоприемниках и магнитофонах использовались радиолампы и транзисторы, — вступил в разговор Виталий Васильевич Старков. — Они были малоэкономичными, громоздкими и ненадежными. Ныне же, когда в них используют микросхемы, электронные приборы стали совсем другими — компактными, долговечными, недорогими. Так давайте же тогда микроэлектронную технологию применим и к производству топливных элементов…

Конечно, сказать куда легче, чем сделать. Но у моих собеседников слова не разошлись с делом. В течение нескольких лет, используя в общем-то стандартные приемы микроэлектронного производства, им удалось создать технологию получения топливных элементов нового поколения.

Главной «изюминкой» в их разработке является использование структур из макропористого кремния. То есть, говоря попросту, исследователям удалось создать некое молекулярное «сито», имеющее заранее заданный размер и форму пор в нем.

— Это «сито» удобно уже тем, что, используя его вместо обычного, мы увеличиваем площадь поверхности структур, на которых происходит реакция, до 250 кв. м на каждый грамм вещества, что в десятки раз больше, чем у обычных плоских поверхностей, — пояснил Старков. — За счет этого можно существенно уменьшить физические размеры топливного элемента. Скажем, вот перед вами экспериментальный образец пластины для показа студентам. Ее размер 10x10 см. Теперь мы можем уменьшить ее площадь в 40 раз. И это еще не все…

Такое молекулярное «сито», как показали эксперименты, может быть дополнено палладиевой пленкой-мембраной, способной сепарировать водород из углеводородистых смесей. То есть, говоря проще, теперь на том же автомобиле можно оставить обычный бензобак, а топливная установка сама будет добывать необходимый ей водород из бензина и вырабатывать с его помощью электричество для работы электромотора.

Новый топливный элемент будет состоять всего из двух деталей: собственно преобразователя-микрочипа и баллончика с топливом. В итоге получается устройство, которое в зависимости от выходной мощности запросто может быть встроено не только в автомобиль, но и уменьшено до размеров аккумуляторов в том же ноутбуке. Стоить же оно будет дешевле все тех же аккумуляторов, поскольку замена кремниевым чипом графитовых электродов с паладиевым и серебряным покрытием, которые сегодня составляют приблизительно 60 % от стоимости всего топливного элемента, приведет к массовому производству подобных источников энергии.

Пользоваться же топливными элементами будет очень просто. Представьте себе геологов в глухой тайге, туристов в дальнем походе или группу спецназа, выполняющую особое задание. Ныне им приходится брать с собой солидный запас сменных батареек для питания радиостанций, навигационных приборов, компьютеров и т. д. Теперь же появляется возможность вместо всего этого иметь при себе лишь флягу с бензином.

— Почему же столь замечательных устройств мы пока не видим в магазинах? — спросил я своих собеседников.

— Со своей стороны мы сделали все, что нужно, — ответил на мой вопрос Анатолий Федорович Вяткин, — разработана технология, оформлены патенты, созданы экспериментальные и макетные образцы. Сейчас ведем переговоры с партнерами, которые готовы вложить средства в развертывание массового производства новых топливных элементов.

И. АГАФОНОВ

ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ

Как работает топливный элемент

Мы уже не раз рассказывали нашим читателям о работе топливного элемента. Тем не менее, для тех, кто не читал предыдущих публикаций, напоминаем, как он устроен.

Как и прочие источники тока, топливные элементы состоят из анода, катода и электролита между ними. Электрическая энергия выделяется в процессе восстановительно-окислительной реакции, которая поддерживается за счет подачи топлива и окислителя. На практике обычно речь идет о реакции образования из водорода и кислорода обычной воды.

Звучит все очень просто. Однако техническая реализация идеи на деле потребовала преодоления целого ряда трудностей. Прежде всего, как уже было сказано, оказалось непрактичным использование в качестве топлива непосредственно водорода. Поэтому ныне в качестве топлива чаще используют бензин или метиловый спирт — метанол.

Под действием высокой температуры в результате процесса реформинга метанол или иное органическое топливо выделяет водород, который затем и поступает на анод топливного элемента. Функции электролита в современных топливных элементах обычно выполняет тончайшая полимерная мембрана с нанесенным на нее слоем платинового катализатора. Она обладает уникальным свойством: пропускает положительные ионы, то есть ядра атомов водорода, но задерживают электроны.

Ионы, проходя сквозь мембрану, вступают на катоде в реакцию в атомами кислорода, содержащегося в воздухе. В обычных условиях такая реакция приводит к образованию гремучего газа и носит взрывной характер, но в топливном элементе она протекает мирно благодаря тому, что идет не во всем его объеме, а лишь на поверхности мембраны с катализатором. Выделяемое при этом тепло поддерживает процесс реформинга. А электроды, отобранные мембраной у атомов водорода, следуют к катоду по внешней цепи, создавая тот самый электрический ток, который нам необходим для питания тех или иных приборов.

На схеме цифрами обозначены:

1 — мембрана; 2 — катодная (или анодная) плата; 3 — газодиффузионная пластина; 4 — графитовый блок; 5 — проводящая плата; 6 — блоки подведения водорода, кислорода и отвода воды.

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ

Метан и жизнь

Метан, как известно, образуется на болотах, в угольных и торфяных пластах, где его производят особые метанообразующие микробы, которые живут в бескислородных пространствах, включая такие особые, как, скажем, коровий желудок.

Установлено, что примерно 2,3 млрд. лет назад именно эти необычные микробы вдохнули в молодую планету Земля жизнь. Не появись некогда эти плодовитые организмы, эволюция на нашей планете пошла бы совершенно иным путем. Не потеряли, впрочем, своего особого значения эти микробы и в наши дни…

Грелка планеты

Как считают исследователи, задолго до появления цианобактерий, которых до недавнего времени считали ответственными за выработку кислорода на нашей планете, Земля стала обитаемой благодаря жизнедеятельности другой группы одноклеточных — анаэробных метаногенов. Именно они, судя по последним данным, господствовали на протяжении первых двух миллиардов лет истории новорожденной планеты.

Экспериментальные подтверждения этой гипотезы ученые начали получать совсем недавно.

Солнце в те далекие времена — порядка 4,6 млрд. лет тому назад — не было таким ярким и жарким, как сегодня. Тем не менее, в течение 2,3 млрд. лет каменная летопись планеты не содержит каких-либо убедительных свидетельств о широкомасштабных оледенениях. Это означает, что климат в те времена был теплее, чем, скажем, во время цикла великого оледенения, бывшего около 100 тыс. лет назад.

Дело в том, что благодаря жизнедеятельности метаногенов — микроорганизмов, вырабатывающих метан в качестве побочного продукта обмена веществ, уровень этого газа в атмосфере древней планеты был в 600 раз выше, чем сегодня. А стало быть, несмотря на то, что Солнце в то далекое время светило менее ярко, чем сейчас, парниковый эффект, вызванный высоким уровнем метана, был достаточно сильным, чтобы уберечь Землю от замерзания.

Взрыв метана в лаборатории. Как видите, он — вещество опасное.

Оптимальный кандидат

Однако ученые не сразу дошли до этой истины. В начале 70-х годов прошлого столетия Карл Саган и Джордж Маллен из Корнеллского университета предположили, что Земля обязана своим существованием в первую очередь аммиаку, который вызывает еще более сильный парниковый эффект, чем метан. Но дальнейшие исследования показали, что даже в бескислородной атмосфере ультрафиолетовые лучи Солнца быстро разрушают этот газ.

Тогда в качестве другого возможного кандидата была выбрана двуокись углерода (СО2) — один из главных газов, который выделялся из извергавшихся в то время вулканов. Но в 1995 году исследователи из Гарвардского университета с помощью расчетов и компьютерного моделирования показали, что молодую Землю не мог согревать и этот газ, так как его содержание в атмосфере было слишком низким.

1 2 3 4 5 6 7 8 9 10 ... 13
Перейти на страницу:
На этой странице вы можете читать бесплатно книгу Юный техник, 2005 № 09 - Журнал «Юный техник» без сокращений.
Комментарии