Категории
Самые читаемые
vseknigi.club » Разная литература » Периодические издания » Юный техник, 2004 № 06 - Журнал «Юный техник»
[not-smartphone]

Юный техник, 2004 № 06 - Журнал «Юный техник»

Читать онлайн Юный техник, 2004 № 06 - Журнал «Юный техник»

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 14
Перейти на страницу:

В общем, получается, что растения не только хорошо умеют рассчитывать свои действия. У них существует свой сигнальный язык, подобный языку насекомых и животных. Одно растение, меняя электрические потенциалы в своих листьях, может сообщить другому об опасности. Словом, если не считать прикованности растений к своему месту, какой-то особой разницы между представителями флоры и фауны нет.

Забавно, но еще полвека назад С.Я. Маршак написал:

Человек — будь он трижды гением —Остается мыслящим растением.С ним в родстве деревья и трава.Не стыдитесь этого родства!

Д. УСКОВ, научный обозреватель «ЮТ»

Растение — компьютер, роща — вычислительная сеть?

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ

Приласкай… компьютер

Со стороны, наверное, это выглядит забавно, но я нередко разговариваю со своим компьютером. То ругаю, то, напротив, пытаюсь лаской заставить его выполнить то, что он делать не хочет. И — это еще смешнее — часто происходит маленькое чудо: бездушный вроде бы прибор перестает давать сбои… Похоже, все идет к тому, что такая манера общения с персональным помощником вскоре может стать повседневной. Мы уже писали, что на стыке двух наук — биологии и кибернетики — возникает нечто совершенно новое — ДНК-компьютеры (см. «ЮТ» № 7 за 2002 г.)

Специалисты и сегодня подтверждают: да, не за горами время, когда можно будет выпить каплю-другую специальной «разумной» жидкости или сделать инъекцию некоего раствора, и внутри организма заработает свой собственный «вычислительный центр», уничтожающий вирусы, больные клетки, без устали заботящийся о здоровье человека.

Более того, ученые утверждают, что, поскольку генетический материал способен к самовоспроизводству и развитию, подобные машины смогут эволюционировать и со временем станут столь совершенны, что смогут решать более сложные задачи, чем самые современные суперкомпьютеры, и приблизятся при этом по своим ассоциативным возможностям к человеческому мозгу.

За основу последней версии ДНК-компьютеров взяты системы, созданные на основе бактерий, проживающих в солончаках. Еще недавно это казалось невозможным. Как складывать и вычитать цифры, набирать тексты, создавать рекламные видеоролики, выяснять, есть ли свободные места на ближайший поезд, с помощью каких-то микробов?

Профессор Леонард Адлеман из Университета Южной Калифорнии недавно подробно описал, как, используя молекулы ДНК, можно производить сложные математические вычисления эффективнее, чем на мощных суперкомпьютерах. Из отдельных генов, фрагментов белковых молекул, помещенных в специальный раствор, с помощью электрических полей или лазерных лучей синтезируют длинные белковые цепи, которые, собственно, и являются результатами вычислений. Остается считать информацию тем же лучом лазера — и результат перед исследователем.

С помощью излучения можно затем мгновенно «обнулить» результат, и ДНК-машина окажется вновь готова к действию.

Адлеман и его коллеги подсчитали, что примерно полкилограмма молекул ДНК может хранить информации больше, чем память всех до сих пор созданных компьютеров, вместе взятых.

В общем, получается этакий разумный аквариум, который может помнить все и вся. Нужно только время от времени подкармливать его и следить за чистотой, чтобы лучше считал. Кстати, считает «аквариумный» компьютер просто великолепно.

Для решения задачи, на которую он тратит всего неделю, традиционным компьютерам понадобилось бы несколько лет машинного времени. В дополнение к «живым» процессорам Центр молекулярной электроники Сиракузского университета разработал «живую» память. Университетские ученые с помощью лазерного луча научились записывать и читать информацию на протеине (белке), который получают из живущих, опять же, в солончаковых болотах микроорганизмов. Так что в шутку можно сказать, что кремниевая электроника постепенно превращается в «болотную».

Но шутки — шутками, а тем не менее, трудно не согласиться, что компьютер все больше «оживает». Последующие поколения биокомпьютеров, возможно, будут представлять собой не мутную жидкость в пробирке, а, например, ласковую домашнюю собачку, которую нужно будет кормить, причесывать и выводить гулять и которая в то же время будет являться средством связи, калькулятором и гигантским хранилищем всевозможных знаний.

У подобной «собачки» можно будет узнать, какая вас ожидает завтра погода, посоветоваться относительно качества той или иной покупки, сделать уроки или решить научную задачу, отправить праздничное поздравление другу на соседний континент или просто поболтать на досуге.

А. ЖУКОВ

Художник Г. КУЗНЕЦОВ

ВЕСТИ ИЗ ЛАБОРАТОРИЙ

Ловушки для света

Ученые продолжают игры со светом, свидетельствует журнал New Scientist Если пять лет назад им удалось притормозить фотоны, заморозив их так; что они стали двигаться со скоростью черепахи, то ныне они создали ловушки, способные удерживать свет сколь угодно долго…

Напомним суть дела. В свое время мы рассказали вам об уникальном эксперименте по торможению света (см. «ЮТ» № 9 за 1999 г.). Датчанка Лина Хау, работающая в Гарвардском университете, США, создала ловушку, способную притормозить фотоны до скорости движения мотоцикла. Для этого лазерный луч посылают в некий сосуд, где при температуре, близкой к абсолютному нулю, фотоны попадают в прозрачную среду, состоящую из замороженных атомов, и замедляют свое движение в 20 млн. раз!

Физики-экспериментаторы из того же Гарвардского университета в Кембридже, штат Массачусетс, сделали следующий шаг. Им удалось поймать импульс света и некоторое время удерживать его в специальной среде, а затем выпустить «на волю», разрешив лететь в том направлении, в котором хотели экспериментаторы. При этом квантовые состояния образующих импульс фотонов света и энергия импульса оставались неизменными. Таким образом, фактически исследователям удалось сохранить всю содержавшуюся в импульсе информацию.

В состав этой научной группы входили и два работающих сейчас в США российских физика — Александр Зибров и Михаил Лукин. Они пояснили, что данный эксперимент никоим образом не опровергает и не подрывает основ теории относительности Эйнштейна. Ни о какой остановке света, как сообщалось в первых газетных сообщениях, речи здесь не идет. По словам Александра Зиброва, в очень грубом приближении можно сказать, что импульс света оказался пойманным как бы в зеркальной камере, «стены» которой представляют собой идеальные отражающие поверхности. Они настолько хорошо отражают свет, что, меняя направление своего движения, фотоны, тем не менее, почти не теряют своей энергии.

Вот в такой ловушке и метался лазерный импульс, не останавливаясь, естественно, ни на мгновение. Потом, по команде экспериментаторов, одну из «стен» убрали, и импульс вырвался на свободу, унося с собой всю содержавшуюся в нем квантовую информацию.

Впрочем, при желании ныне можно заточить лазерный импульс и навечно. Это способна сделать еще одна ловушка, сконструированная Ричардом Брауном из британской Национальной физической лаборатории, расположенной в городе Теддингтон. Он создал почти идеальную модель абсолютно черного тела. Если вы заглянете в учебник физики, то узнаете, что физической моделью такого тела может послужить полая сфера с небольшим отверстием. Внутренние стенки этой сферы должны быть покрыты столь черной краской, что она бы смогла поглотить после нескольких отражений луч света полностью, без остатка, словно черная дыра. Именно такое покрытие, которое отражает в 10–20 раз меньше света, чем самая черная краска, и сумел создать Р.Браун. Пластину из никель-фосфорного сплава опустили в азотную кислоту. Жидкость забурлила, и через несколько секунд пластина стала чернее сажи.

Сама идея подобного чернения химическим травлением никель-фосфорного сплава появилась еще двадцать лет назад, говорит Браун. Однако первые попытки получить оптимальное соотношение никеля и фосфора, как и саму технологию, обеспечивающую уровень поглощения света выше, чем у черной краски, были неудачными. Пришлось провести исследования поверхности сотен пластин из различных сплавов под электронным микроскопом, прежде чем Ричард Браун и его коллеги поняли, в чем заключалась ошибка их предшественников. В итоге ученые разработали двухступенчатый метод, который позволяет получить самый черный цвет в мире.

На первом этапе объект, который надо зачернить, помещают на пять часов в раствор сульфата никеля и гипофосфита натрия. Возникает никель-фосфорное покрытие, содержащее пять-семь процентов фосфора. Затем поверхность протравливают азотной кислотой, которая и дает столь сильный эффект.

1 2 3 4 5 6 7 8 9 10 ... 14
Перейти на страницу:
На этой странице вы можете читать бесплатно книгу Юный техник, 2004 № 06 - Журнал «Юный техник» без сокращений.
Комментарии