Категории
Самые читаемые
vseknigi.club » Научные и научно-популярные книги » Прочая научная литература » Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио
[not-smartphone]

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио

Читать онлайн Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 50 51 52 53 54 55 56 57 58 ... 66
Перейти на страницу:

Если бы пришлось выбирать одно-единственное понятие из нашей математики, которое с наибольшей вероятностью существует независимо от человеческого разума, на чем бы вы остановились? Большинство из нас, скорее всего, пришло бы к выводу, что это должны быть натуральные числа. Что может быть естественнее, «натуральнее», чем 1, 2, 3, …? Даже немецкий математик Леопольд Кронекер (1823–1891), склонный к интуиционизму, как известно, провозгласил: «Господь сотворил натуральные числа, все остальное – дело рук человека». Поэтому, если удастся доказать, что даже натуральные числа как понятие берут начало в человеческом разуме, это будет серьезный довод в пользу парадигмы «изобретения». Вот как это формулирует Атья (Atiyah 1995): «Представим себе, что разумом наделено не человечество, а какая-нибудь огромная одинокая медуза в глубинах Тихого океана. Все ее сенсорные данные определялись бы движением, температурой и давлением. Поскольку все это – чистейший континуум, в такой обстановке не может появиться ничего дискретного, и медузе нечего было бы считать». Иначе говоря, Атья убежден, что даже такое фундаментальное понятие, как натуральные числа, и то было создано человеком посредством абстрагирования элементов физического мира (как сказали бы когнитивисты, «посредством закладывания метафор»). Иначе говоря, число 12, например, отражает абстракцию качества, общего для всего, что объединяется по дюжине, точно так же как слово «мысль» отражает самые разные процессы, происходящие у нас в мозге.

Возможно, то, что Атья привлекает для доказательства гипотетическую вселенную медузы, читателю не понравится. Возможно, читатель возразит, что Вселенная только одна, деваться из нее некуда и любое предположение следует изучать в контексте этой Вселенной. Однако это, в сущности, все равно что признать, что понятие натуральных чисел каким-то образом зависит от Вселенной человеческого опыта! Обратите внимание, что именно это и имеют в виду Лакофф и Нуньес, когда говорят, что математика «встроена».

Итак, я только что приводил доводы за то, что понятия нашей математики коренятся в человеческом разуме. Вероятно, вы спросите, почему же я раньше так настаивал, что математика по большей части открыта – именно такой точки зрения придерживаются платоники.

Изобретение и открытие

В повседневной жизни разница между открытием и изобретением иногда совершенно очевидна, а иногда несколько размыта. Никто не станет утверждать, будто Шекспир открыл Гамлета, а мадам Кюри изобрела радий. Однако же новые лекарства от некоторых болезней обычно принято называть открытиями, хотя на самом деле они зачастую появляются в результате тщательного синтеза новых химических соединений. Давайте остановимся на вполне конкретном примере из математики, который, думается мне, не только поможет прояснить, чем открытие отличается от изобретения, но и позволит взглянуть по-новому на процесс развития и прогресса математики.

В книге VI фундаментальных «Начал» Евклида мы обнаруживаем определение деления отрезка на две неравные части неким заданным способом (оно же применительно к площади приводится и раньше, в книге II). Согласно Евклиду, если отрезок АВ делится точкой С (рис. 62) таким образом, что соотношение длин сегментов (AC/CB) равно отношению длины всего отрезка к более длинному сегменту (AB/AC), говорят, что отрезок делится «в крайнем и среднем отношении». Иначе говоря, если AC/CB = AB/AC, то каждое из этих отношений называется «крайним и средним отношением». С XIX века это отношение известно широкой публике как золотое сечение[157]. В результате несложных алгебраических вычислений получается, что золотое сечение равно

Прежде всего, вы вправе поинтересоваться, почему Евклида вообще заинтересовало определение именно такого деления отрезка и зачем было давать этому соотношению особое название? Ведь разных способов поделить отрезок бесконечно много. Ответ на этот вопрос можно найти в культурно-мистическом наследии Пифагора и Платона. Вспомним, что пифагорейцы были одержимы числами. Они считали, что нечетные числа – это мужское начало и добро, а четные, соответственно, – женское начало и зло. Особое родство они ощущали с числом 5: ведь это союз 2 и 3, первого четного (женского) числа с первым нечетным (мужским). (Число 1 вообще считалось не числом, а генератором остальных чисел.) Поэтому для пифагорейцев число 5 представляло собой воплощение любви и брака, и пентаграмму – пятиконечную звезду – они сделали символом своего братства (рис. 63). И вот тут-то на сцену впервые вышло золотое сечение. Если взять правильную пентаграмму, то отношение боковой стороны любого треугольника к его основанию (a/b на рис. 63) в точности равно золотому сечению. Подобным же образом отношение любой диагонали правильного пятиугольника к его стороне (c/d на рис. 64) также равно золотому сечению. А значит, чтобы построить пятиконечную звезду или пятиугольник при помощи циркуля и линейки (именно так проделывали геометрические построения древние греки), требуется разделить отрезок в золотом сечении.

Рис. 62

Рис. 63

Рис. 64

Платон обогатил мистический смысл золотого сечения дополнительными обертонами. Древние греки полагали, что все во Вселенной состоит из четырех стихий – земли, воды, воздуха и огня. В «Тимее» Платон попытался объяснить структуру вещества на основании пяти правильных многогранников, которые впоследствии были названы в его честь платоновыми телами (рис. 65). Это выпуклые тела – тетраэдр, куб, октаэдр, икосаэдр и додекаэдр – единственные, у которых все грани (у каждого многогранника по отдельности) одинаковы и представляют собой правильные многоугольники, а все вершины лежат на сфере. Каждое из первых четырех тел Платон связывал с определенной стихией: земля ассоциировалась с устойчивым кубом, всепроникающий огонь – с острым тетраэдром, воздух – с октаэдром, а вода – с икосаэдром. А о додекаэдре (рис. 65, d) Платон в «Тимее» писал: «В запасе оставалось еще пятое многогранное построение, его бог определил для Вселенной и прибегнул к нему в качестве образца» (пер. С. Аверинцева). Итак, додекаэдр отражал вселенную в целом. Обратите внимание, что додекаэдр, обладающий двенадцатью пятиугольными гранями, прямо-таки воплощает в себе золотое сечение. И его объем, и площадь поверхности можно выразить в виде простых равенств с участием золотого сечения (так же обстоят дела и с икосаэдром).

То есть исторический опыт показывает, что методом многочисленных проб и ошибок пифагорейцы и их последователи открыли способы строить определенные геометрические фигуры, которые для них воплощали важные понятия вроде любви и космоса. Тогда неудивительно, что и они, и Евклид, задокументировавший эту традицию, изобрели понятие золотого сечения, необходимого для этих построений, и дали ему название. В отличие от любого другого произвольного соотношения, число 1,618… стало предметом пристального изучения с богатой и интересной историей и даже в наши дни то и дело заявляет о себе в самых неожиданных местах. Например, спустя две тысячи лет после Евклида немецкий астроном Иоганн Кеплер открыл, что это число – чудесным образом – имеет отношение к последовательности чисел под названием числа Фибоначчи. Последовательность Фибоначчи – 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,… – характерна тем, что каждый ее член, начиная с третьего, представляет собой сумму двух предыдущих (2 = 1 + 1; 3 = 1 + 2; 5 = 2 + 3 и так далее). А если поделить любой член последовательности на непосредственно предшествующий (например, 144 ÷ 89; 233 ÷ 144 и так далее), окажется, что отношения колеблются в окрестности золотого сечения, причем чем больше члены последовательности, тем ближе их отношения к золотому сечению. Например, при округлении до шестого знака после запятой у нас получатся следующие числа: 144 ÷ 89 = 1,617978; 233 ÷ 144 = 1,618056; 377 ÷ 233 = 1,618026 и так далее.

Рис. 65

В новое время выяснилось, что числа Фибоначчи и, соответственно, золотое сечение описывают расположение листьев на стеблях некоторых растений – это явление называется филлотаксис – и структуру кристаллов некоторых алюминиевых сплавов.

Почему я считаю определение золотого сечения, которое дал Евклид, изобретением? Потому что изобретательство Евклида выделило это соотношение из общей массы и привлекло к нему внимание математиков. С другой стороны, в Китае, где понятие золотого сечения не было изобретено, в математической литературе нет никаких упоминаний ни о чем похожем. В Индии, где его опять же не изобрели, оно вскользь затронуто лишь в нескольких второстепенных тригонометрических теоремах.

Примеров, которые показывают, что вопрос «Что есть математика – изобретение или открытие?» некорректно сформулирован, можно найти множество. Наша математика – это сочетание изобретений и открытий. Аксиомы евклидовой геометрии как понятия были изобретением, как и, скажем, правила игры в шахматы. Кроме того, аксиомы были дополнены различными изобретенными понятиями – треугольниками, параллелограммами, эллипсами, золотым сечением и тому подобным. А теоремы евклидовой геометрии, напротив, по большей части представляют собой открытия: это пути, связывающие разные понятия. В некоторых случаях доказательства приводили к формулировке новых теорем – математики изучали, что можно доказать, и из этого выводили теоремы. В других, как описано в «Методе» Архимеда, они сначала находили ответ на заинтересовавший их вопрос, а потом уже работали над доказательством.

1 ... 50 51 52 53 54 55 56 57 58 ... 66
Перейти на страницу:
На этой странице вы можете читать бесплатно книгу Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио без сокращений.
Комментарии