Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление - Карлос Мадрид
Шрифт:
Интервал:
Закладка:
На этом основании математик может задаться следующим вопросом: будут ли эти звезды и впредь продолжать свое вращательное движение вокруг Солнца? Не произойдет ли, напротив, такая вещь, что одна из этих звезд отдалится от своих подруг, чтобы удалиться в бесконечность? Этот вопрос образует проблему устойчивости системы. Лаплас полагал, что он решил эту проблему, но только стараниями современных математиков, и в особенности Пуанкаре, обнаружена была чрезвычайная трудность ее решения. Но может случиться так, что практические указания, которые астроном дает математику, представляют для последнего бесчисленное множество теоретических данных, граничащих друг с другом, но тем не менее различных. Возможно, что среди этих указаний окажутся такие, по которым все звезды вечно должны оставаться на конечном расстоянии, но, может быть, окажутся и такие, по которым некоторые из этих небесных тел должны удалиться в бесконечность. Если бы здесь обнаружилось обстоятельство, аналогичное тому, с которым мы познакомились в проблеме Адамара, то для физика всякий математический вывод относительно устойчивости Солнечной системы оказался бы выводом никогда не применимым».
В присутствии хаоса реальная и прогнозная траектория системы в среднесрочном и долгосрочном периоде будут расходиться.
Несмотря на то что все французские математики находились в тени Пуанкаре, на протяжении большей части XX столетия никто не предпринимал серьезных попыток подробно изучить гомоклинические сети и хаотические орбиты.
Между открытиями Пуанкаре и началом современных исследований хаоса прошло очень много времени. Так случилось потому что, во-первых, была открыта квантовая механика, которой уделяли внимание несколько поколений физиков и математиков. Если в квантовой механике случайность оказывает влияние на различные события новым, неизвестным образом, зачем вводить случайность в классической механике, рассматривая чувствительность к начальным условиям? Во-вторых, идеи Пуанкаре, Адамара и Дюгема были высказаны слишком рано, когда еще не существовало средств для их дальнейшего развития, и только с появлением компьютеров стало возможным произвести необходимые сложные вычисления и численный анализ.
* * *
МАКС БОРН (1882–1970). БОРЬБА С ХАОСОМ
Этот знаменитый физик, создатель квантовой механики, в 1955 году вновь подчеркнул, какую важную роль в физике играет высокая чувствительность системы к начальным условиям, Борн задался вопросом: является ли классическая механика детерминированной? Чтобы найти ответ, он рассмотрел модель крайне нестабильного газа, предложенную Хендриком Антоном Лоренцем в 1905 году для объяснения теплопроводности металлов. По сути, каждая частица газа Лоренца ведет себя так же, как бильярдный шар в моделях Адамара и Синая: эта частица (допустим, электрон) при движении и столкновении с рядом препятствий (например, с атомами металла) отклоняется от траектории, и в результате малейшее различие в начальных условиях порождает два совершенно разных состояния. И вновь, если бы положение и скорость частицы можно было определить с очень высокой точностью, то ее состояние в последующие моменты времени (в прошлом или в будущем) можно было бы определить однозначно.
В своей речи при получении Нобелевской премии по физике в 1954 году Борн привел еще один пример: представьте себе частицу, которая движется без трения вдоль прямой между двумя стенами, причем соударение частицы со стенами абсолютно упругое. Частица движется с постоянной скоростью, равной начальной скорости, назад и вперед. Если мы точно знаем скорость частицы, то можем определить, где она будет находиться в любой момент времени. Но если допускается даже небольшая погрешность в измерении скорости, то неточность при измерении положения частицы в последующие моменты времени будет нарастать, а через достаточное время станет сопоставима с расстоянием между стенами. Следовательно, предсказать положение частицы на достаточно большом промежутке времени невозможно. Чувствительность к начальным условиям — составная часть классического детерминизма.
* * *
Последователи Пуанкаре в АмерикеШел XX век, и работы Пуанкаре были продолжены представителями двух математических школ: по одну сторону океана — американской, в частности Биркхофом и Смэйлом, по другую сторону — советской школой, основанной Ляпуновым (главными ее представителями были Колмогоров и Арнольд). Влияние Пуанкаре оставалось заметным, однако его идеи о гомоклинических точках на долгое время были забыты.
В работах Джорджа Дэвида Биркхофа (1884–1944) влияние работ Пуанкаре прослеживается при рассмотрении качественных характеристик дифференциальных уравнений. В своей книге «Динамические системы» (1927), где впервые упоминается термин «динамическая система», этот американский математик описывает теорию динамических систем и заходит дальше, чем Пуанкаре, в анализе кривых, определяемых дифференциальными уравнениями. Иными словами, Биркхоф использовал наследие Пуанкаре и развил его идеи в новых направлениях.
Говоря об американской математической школе, нельзя обойти вниманием фигуру Стивена Смэйла (род. 1930), удостоенного в 1966 году Филдсовской премии за вклад в теорию динамических систем. Смэйл находился под влиянием сразу трех наиболее важных традиций изучения динамических систем и хаоса, а именно: забытой традиции, начатой Пуанкаре, к которой принадлежал Биркхоф; русской математической школы, объединившейся с английской усилиями Соломона Лефшеца во время холодной войны, и, наконец, традиции аналитико-топологического изучения дифференциальных уравнений, начатой Мэри Люси Картрайт (1900–1998) и Джоном Идензором Литлвудом (1883–1977) в Великобритании на основе трудов Ван дер Поля.
Бальтазар Ван дер Поль (1889–1959) был голландским инженером-электронщиком, который в «золотые двадцатые» обнаружил предельный цикл (об этом понятии мы уже говорили в первой главе) в нелинейном дифференциальном уравнении, которое описывало поведение электронных ламп, имевших огромное значение в сфере телекоммуникаций. Это уравнение имело траекторию-решение в форме замкнутой кривой, которая притягивала к себе все ближайшие траектории. В 1945 году, когда союзники вовсю работали над созданием радара, Картрайт и Литлвуд доказали, что в окрестностях этого предельного цикла наблюдалось сложное непериодическое движение — это был хаос!
Несколько позже, в 1950-е, специалист по топологии Стивен Смэйл продолжил качественный анализ динамических систем в поисках теоремы, аналогичной теореме Пуанкаре — Бендиксона, для трехмерного пространства, однако его работы не увенчались успехом. Подобная теорема не сформулирована до сих пор, так как траектории в пространстве могут переплетаться, что крайне усложняет динамику. Существуют трехмерные динамические системы, в которых, помимо центров, фокусов, узлов, седел и предельных циклов, наблюдаются странные аттракторы.
К несчастью для Смэйла, хаос существовал.
Странный аттрактор Рёсслера (1976). Подобно ленте Мёбиуса, он имеет только одну сторону, хотя кажется, что у него две стороны: достаточно проследовать вдоль внешней границы, чтобы увидеть, как она постепенно переходит во внутреннюю.
Изначально Смэйл считал, что почти все (или все) трехмерные динамические системы обладают не слишком странным поведением — почти таким же, как и двухмерные динамические системы на плоскости, все возможные аттракторы которых принадлежали конечному множеству фокусов и предельных циклов. Интерес Смэйла к аттракторам был вызван тем, что они описывали поведение динамической системы в долгосрочном периоде. Эти точки указывали, какими будут системы в далеком будущем, поскольку они испытывают фатальное притяжение к аттракторам, расположенным бесконечно далеко. Смэйл полагал, что единственными видами движения, корректными в долгосрочном периоде, были либо пребывание в состоянии покоя, либо равновесие в стационарном состоянии (в фокусе), либо периодическое повторение некой последовательности движений. Иными словами, система могла либо оставаться неподвижной, либо снова и снова совершать определенные движения. В долгосрочном периоде траекториями системы были точки либо окружности.
Каким же было удивление ученого, когда он, отдыхая на пляжах Рио-де-Жанейро, получил письмо с контрпримером к своей гипотезе. Норман Левинсон, коллега Смэйла из Массачусетского технологического института (MIT), описал динамическую систему, порождавшую нелинейный осциллятор Ван дер Поля, изученный Картрайт и Литлвудом. Эта система имела бесконечное множество периодических орбит и, что еще хуже, в долгосрочном периоде демонстрировала в высшей степени странное поведение: в теории была возможна ситуация, при которой система в будущем не будет оставаться неподвижной и не будет совершать определенные движения снова и снова, а продолжит двигаться совершенно беспорядочным образом. Рассмотрев аналитические работы Левинсона с геометрической точки зрения, Смэйл в 1959 году описал соленоид Смэйла (названный так за внешнее сходство с соленоидом — электромагнитом, состоящим из металлического сердечника, на который намотана проволока), а затем, уже в 1960-е — подкову Смэйла, обладающую крайне сложной динамикой, схожей с той, что демонстрирует система, описанная Левинсоном. Это были два в высшей степени странных аттрактора.